Smarter than GPU
Smarter than GPU
As a leading On-Device AI semiconductor company, DEEPX we are proud to introduce our groundbreaking AI quantization
technology, revolutionizing the landscape of computational efficiency and performance.
IQ8, short for Intelligent Quantization Int8, marks significant advancement. Unlike GPU-based solutions using 32 Floating
Point, IQ8 maintains the same level of GPU accuracy or even outperforms GPU accuracy. In comparison with IQ8-Pro,
IQ8-Master can provide the highest model accuracy, but it requires a full dataset with label information for the training.
With our innovative approach, we enable unparalleled optimization of neural networks, delivering significant reductions in
memory usage and computational complexity while preserving model accuracy. Embrace the future of AI processing with our
cutting-edge solutions, driving transformative advancements in technology and paving the way for AI everywhere.
As a leading On-Device AI semiconductor company, DEEPX we are proud to introduce our groundbreaking
AI quantization technology, revolutionizing the landscape of computational efficiency and performance.
IQ8, short for Intelligent Quantization Int8, marks significant advancement.
Unlike GPU-based solutions using 32 Floating Point, IQ8 maintains the same level of GPU accuracy or
even outperforms GPU accuracy. In comparison with IQ8-Pro, IQ8-Master can provide the highest model accuracy,
but it requires a full dataset with label information for the training.
With our innovative approach, we enable unparalleled optimization of neural networks,
delivering significant reductions in memory usage and computational complexity while preserving model accuracy.
Embrace the future of AI processing with our cutting-edge solutions,
driving transformative advancements in technology and paving the way for AI everywhere.
1. Task: Image Classification
IC |
DenseNet121 |
ImageNet |
224X224 |
3.19 |
8.04 |
top1 |
74.43 |
72.68 |
TBU |
486.14 |
|
IC |
DenseNet161 |
ImageNet |
224X224 |
8.43 |
28.86 |
top1 |
77.11 |
76.41 |
TBU |
262.07 |
|
IC |
EfficientNetB2 |
ImageNet |
288X288 |
1.60 |
9.08 |
top1 |
80.61 |
79.19 |
TBU |
769.47 |
|
IC |
EfficientNetV2S |
ImageNet |
384X384 |
9.47 |
21.38 |
top1 |
84.24 |
81.30 |
TBU |
461.37 |
|
IC |
HarDNet39DS |
ImageNet |
224X224 |
0.44 |
3.48 |
top1 |
72.08 |
71.41 |
TBU |
2797.72 |
|
IC |
HarDNet68 |
ImageNet |
224X224 |
4.26 |
17.56 |
top1 |
76.47 |
76.34 |
TBU |
679.24 |
|
IC |
MobileNetV1 |
ImageNet |
224X224 |
0.58 |
4.22 |
top1 |
69.49 |
68.84 |
TBU |
4358.37 |
|
IC |
MobileNetV2 |
ImageNet |
224X224 |
0.32 |
3.49 |
top1 |
72.15 |
71.97 |
72.76 |
3449.78 |
|
IC |
RegNetX400MF |
ImageNet |
224X224 |
0.42 |
5.48 |
top1 |
74.88 |
74.46 |
TBU |
825.76 |
|
IC |
RegNetX800MF |
ImageNet |
224X224 |
0.81 |
7.24 |
top1 |
77.52 |
77.26 |
TBU |
668.62 |
|
IC |
RegNetY200MF |
ImageNet |
224X224 |
0.21 |
3.15 |
top1 |
70.36 |
70.13 |
TBU |
2408.65 |
|
IC |
RegNetY400MF |
ImageNet |
224X224 |
0.41 |
4.33 |
top1 |
75.78 |
75.38 |
TBU |
1739.39 |
|
IC |
RegNetY800MF |
ImageNet |
224X224 |
0.85 |
6.42 |
top1 |
78.83 |
78.54 |
TBU |
1102.22 |
|
IC |
ResNeXt26_32x4d |
ImageNet |
224X224 |
2.49 |
15.37 |
top1 |
75.85 |
75.68 |
TBU |
787.84 |
|
IC |
ResNeXt50_32x4d |
ImageNet |
224X224 |
4.27 |
25.00 |
top1 |
81.19 |
80.95 |
TBU |
461.63 |
|
IC |
ResNet18 |
ImageNet |
224X224 |
1.82 |
11.69 |
top1 |
69.75 |
69.60 |
70.85 |
2192.28 |
|
IC |
ResNet34 |
ImageNet |
224X224 |
3.67 |
21.79 |
top1 |
73.29 |
73.27 |
73.71 |
1342.05 |
|
IC |
ResNet50(v1) |
ImageNet |
224X224 |
4.12 |
25.53 |
top1 |
75.90 |
75.72 |
76.71 |
1021.18 |
|
IC |
ResNet50(v2) |
ImageNet |
224X224 |
4.12 |
25.53 |
top1 |
80.85 |
80.66 |
80.92 |
1013.91 |
|
IC |
ResNet101 |
ImageNet |
224X224 |
7.84 |
44.50 |
top1 |
81.90 |
81.62 |
TBU |
612.82 |
|
IC |
SqueezeNet1_0 |
ImageNet |
224X224 |
0.83 |
1.25 |
top1 |
58.09 |
57.07 |
TBU |
2081.43 |
|
IC |
SqueezeNet1_1 |
ImageNet |
224X224 |
0.36 |
1.24 |
top1 |
58.18 |
57.60 |
TBU |
2713.14 |
|
IC |
VGG11BN |
ImageNet |
224X224 |
7.63 |
132.86 |
top1 |
70.37 |
70.24 |
71.62 |
276.56 |
|
IC |
VGG19BN |
ImageNet |
224X224 |
19.69 |
143.67 |
top1 |
74.24 |
74.09 |
TBU |
223.74 |
|
IC |
WideResNet101_2 |
ImageNet |
224X224 |
22.81 |
126.82 |
top1 |
82.52 |
82.30 |
TBU |
264.10 |
|
IC |
WideResNet50_2 |
ImageNet |
224X224 |
11.43 |
68.85 |
top1 |
81.61 |
81.54 |
TBU |
459.12 |
|
IC |
AlexNet |
ImageNet |
224X224 |
0.72 |
61.10 |
top1 |
56.56 |
56.53 |
57.51 |
629.92 |
|
IC |
VGG11 |
ImageNet |
224X224 |
7.63 |
132.86 |
top1 |
69.03 |
68.94 |
69.84 |
276.56 |
|
IC |
VGG13 |
ImageNet |
224X224 |
11.34 |
133.05 |
top1 |
69.93 |
69.83 |
70.86 |
249.24 |
|
IC |
VGG13BN |
ImageNet |
224X224 |
11.34 |
133.05 |
top1 |
71.55 |
71.55 |
72.70 |
248.88 |
|
IC |
MobileNetV3Small |
ImageNet |
224X224 |
0.06 |
2.54 |
top1 |
67.66 |
TBU |
67.50 |
4429.61 |
|
IC |
MobileNetV3Large |
ImageNet |
224X224 |
0.23 |
5.47 |
top1 |
75.27 |
72.82 |
75.27 |
2598.39 |
|
IC |
OSNet0_5 |
ImageNet |
224X224 |
0.44 |
1.14 |
top1 |
68.26 |
67.37 |
69.01 |
2537.11 |
|
IC |
OSNet0_25 |
ImageNet |
224X224 |
0.14 |
0.71 |
top1 |
58.88 |
54.19 |
59.28 |
2790.96 |
|
IC |
RepVGGA1 |
ImageNet |
320X320 |
4.83 |
12.79 |
top1 |
75.28 |
73.69 |
76.00 |
1478.19 |
|
2. Task: Object Detection
OD |
SSDMV1 |
PascalVOC |
300X300 |
1.55 |
9.48 |
mAP50 |
67.59 |
67.58 |
TBU |
1723.61 |
|
OD |
SSDMV2Lite |
PascalVOC |
300X300 |
0.70 |
3.38 |
mAP50 |
68.70 |
68.73 |
69.52 |
1559.99 |
|
OD |
YoloV3 |
COCO |
640X640 |
81.13 |
62.02 |
mAP50:95 |
46.65 |
46.41 |
TBU |
92.69 |
|
OD |
YoloV5N |
COCO |
640X640 |
2.71 |
1.97 |
mAP50:95 |
28.08 |
27.01 |
28.26 |
376.77 |
|
OD |
YoloV5S |
COCO |
640X640 |
9.10 |
7.33 |
mAP50:95 |
37.45 |
36.91 |
37.36 |
327.01 |
|
OD |
YoloV5M |
COCO |
640X640 |
26.07 |
21.27 |
mAP50:95 |
45.08 |
44.67 |
45.07 |
190.01 |
|
OD |
YoloV5L |
COCO |
640X640 |
57.10 |
46.64 |
mAP50:95 |
48.74 |
47.72 |
48.34 |
133.33 |
|
OD |
YoloV7 |
COCO |
640X640 |
55.28 |
36.92 |
mAP50:95 |
50.86 |
50.69 |
TBU |
99.27 |
|
OD |
YoloV7E6 |
COCO |
1280X1280 |
269.21 |
97.27 |
mAP50:95 |
55.22 |
55.15 |
TBU |
19.83 |
|
OD |
YoloV7Tiny |
COCO |
640X640 |
7.01 |
6.24 |
mAP50:95 |
37.29 |
37.08 |
TBU |
322.91 |
|
OD |
YOLOX_S |
COCO |
640X640 |
14.41 |
8.96 |
mAP50:95 |
40.45 |
40.17 |
40.30 |
310.87 |
|
OD |
YOLOv8L |
COCO |
640X640 |
85.13 |
43.69 |
mAP50:95 |
52.75 |
52.14 |
52.77 |
90.64 |
|
3. Task: Segmentation
SEG |
BiSeNetV1 |
CITY |
1024X2048 |
118.98 |
13.27 |
mIOU |
75.37 |
74.67 |
TBU |
14.04 |
|
SEG |
BiSeNetV2 |
CITY |
1024X2048 |
99.14 |
3.35 |
mIOU |
74.95 |
74.54 |
75.00 |
28.26 |
|
SEG |
DeepLabV3PlusMobilenet |
VOC2012 |
512X512 |
26.62 |
5.80 |
mIOU |
68.48 |
68.22 |
TBU |
205.93 |
|
4. Task: Face ID
FD |
YOLOv5s_Face |
WIDERFace (easy) |
640X640 |
8.53 |
8.073 |
AP50 |
94.57 |
95.08 |
TBU |
321.53 |
|
FD |
YOLOv5s_Face |
WIDERFace (medium) |
640X640 |
8.53 |
8.07 |
AP50 |
92.94 |
93.58 |
TBU |
321.53 |
|
FD |
YOLOv5s_Face |
WIDERFace (hard) |
640X640 |
8.53 |
8.07 |
AP50 |
83.70 |
84.71 |
TBU |
321.53 |
|
FD |
YOLOv5m_Face |
WIDERFace (easy) |
640X640 |
25.84 |
22.00 |
AP50 |
95.51 |
95.31 |
TBU |
190.01 |
|
FD |
YOLOv5m_Face |
WIDERFace (medium) |
640X640 |
25.84 |
22.00 |
AP50 |
94.03 |
93.76 |
TBU |
190.01 |
|
FD |
YOLOv5m_Face |
WIDERFace (hard) |
640X640 |
25.84 |
22.00 |
AP50 |
85.65 |
85.11 |
TBU |
190.01 |
|
FD |
YOLOv7s_Face |
WIDERFace (easy) |
640X640 |
9.35 |
6.26 |
AP50 |
94.86 |
94.67 |
TBU |
253.93 |
|
FD |
YOLOv7s_Face |
WIDERFace (medium) |
640X640 |
9.35 |
6.26 |
AP50 |
93.30 |
93.06 |
TBU |
253.93 |
|
FD |
YOLOv7s_Face |
WIDERFace (hard) |
640X640 |
9.35 |
6.26 |
AP50 |
85.30 |
85.06 |
TBU |
253.93 |
|
FD |
YOLOv7_Face |
WIDERFace (easy) |
640X640 |
54.63 |
38.55 |
AP50 |
96.93 |
96.81 |
TBU |
99.51 |
|
FD |
YOLOv7_Face |
WIDERFace (medium) |
640X640 |
54.63 |
38.55 |
AP50 |
95.69 |
95.59 |
TBU |
99.51 |
|
FD |
YOLOv7_Face |
WIDERFace (hard) |
640X640 |
54.63 |
38.55 |
AP50 |
88.34 |
88.38 |
TBU |
99.51 |
|
FD |
YOLOv7_TTA_Face |
WIDERFace (easy) |
640X640 |
54.63 |
38.55 |
AP50 |
96.92 |
96.86 |
TBU |
100.43 |
|
FD |
YOLOv7_TTA_Face |
WIDERFace (medium) |
640X640 |
54.63 |
38.55 |
AP50 |
95.69 |
95.65 |
TBU |
100.43 |
|
FD |
YOLOv7_TTA_Face |
WIDERFace (hard) |
640X640 |
54.63 |
38.55 |
AP50 |
88.34 |
88.33 |
TBU |
100.43 |
|
FD |
YOLOv7_W6_Face |
WIDERFace (easy) |
960X960 |
100.21 |
74.44 |
AP50 |
96.37 |
96.77 |
TBU |
63.41 |
|
FD |
YOLOv7_W6_Face |
WIDERFace (medium) |
960X960 |
100.21 |
74.44 |
AP50 |
95.07 |
95.56 |
TBU |
63.41 |
|
FD |
YOLOv7_W6_Face |
WIDERFace (hard) |
960X960 |
100.21 |
74.44 |
AP50 |
88.59 |
88.29 |
TBU |
63.41 |
|
FD |
YOLOv7_W6_TTA_Face |
WIDERFace (easy) |
1280X1280 |
178.16 |
77.96 |
AP50 |
95.98 |
96.06 |
TBU |
34.91 |
|
FD |
YOLOv7_W6_TTA_Face |
WIDERFace (medium) |
1280X1280 |
178.16 |
77.96 |
AP50 |
94.98 |
95.05 |
TBU |
34.91 |
|
FD |
YOLOv7_W6_TTA_Face |
WIDERFace (hard) |
1280X1280 |
178.16 |
77.96 |
AP50 |
89.44 |
89.77 |
TBU |
34.91 |
|
5. Task: Image De-noising
DN |
DnCNN_15 |
BDS68 |
512X512 |
145.80 |
0.56 |
PSNR |
31.72 |
31.47 |
TBU |
45.19 |
|
DN |
DnCNN_25 |
BDS68 |
512X512 |
145.80 |
0.56 |
PSNR |
29.20 |
28.76 |
TBU |
45.29 |
|
DN |
DnCNN_50 |
BDS68 |
512X512 |
145.80 |
0.56 |
PSNR |
26.21 |
24.95 |
TBU |
45.12 |
|